
NASA Technical Memorandum 100642

The CSM Testbed Software System:
A Development Environment for Structural Analysis Methods

on the NAS CRAY-2

{bASA-_M-IO0_2) _SE CSM 'lE51_r.k13_._FTgAiiE N89-11287

_hUCIU_AL Al_L_Cl_ MI,'IhCBS (1_ _I_E hAS
£hA¥-i {_ASA) _ _ GSCL 20_ Uacla_

63/39 0170002

Ronnie E. Gillian and Christine G. Lotts

September 1988

Nal_onal Aer_)naullcs and
Space Admtnlslrahon

Langley Research Center
Hampton, Virginia 23665-5225

Table of Contents

The CSM Testbed Software System:

A Development Environment for Structural Analysis Methods on the NAS CRAY-2

Introduction 1

Program Structure

Computer Environment

The Program Code 8

Verification Procedures 10

CRAY-2 Implementation 11

Structural Analysis Methods Derelopment Experiences 13

Future Directions for the CSM 'Iestbed 15

Concluding Remarks 16

References 18

Trademarks 18

Figures 19

Appendix A. Testbed CRAY-2 B:ock I/O Routines

Appendix B. Testbed Main Program AMS Files

A-1

B-1

THE CSM TESTBED SOFTWARE SYSTEM: A Development Environment for Struc-

tural Analysis Methods on the NAS CRAY-2

INTRODUCTION

The Computational Structural Mechanics (CSM) Activity at the NASA Langley Research

Center is developing structural analysis methods that exploit modern computers (ref. 1).

To facilitate that research effort, a development environment has been constructed to

insulate the researcher from the many computer operating systems of a widely distributed

computer network. This paper describes that er, vironment and its extension to include the

supercomputer resources of the Numerical Aerodynamic Simulator (NAS) CRAY-2 TM, at

the NASA Ames Research Center.

The field of computational structural analysis is dominated by two types of computer

programs. One type is the huge, 2000 subroutine (ref. 2), general purpose program that

is the result of over a hundred man-years of effort spanning over a decade; the other

type is the relatively small code resulting from an academic or research environment that

represents a one- to two-year effort for a specific research application. This dichotomy has

resulted in long delays in making research technology available for the critical structures

problems that NASA faces. To address the pioblem of accelerating the introduction of

successful research technology into large-scale z,pplications programs, a modular, public-

domain, machine independent, architecturally simple, software development environment,

denoted the CSM Testbed, is being constructed.

A development environment which insulates both the structural analyst using the Testbed

and the methods developer writing enhancements for it is important in a distributed en-

vironment. Distributed environments are made up of stand-alone computers of different

sizes, architectures, and vendors, with a common network protocol offering the user easy file

transfer and remote login functions. Structural analysts require the diverse computer ca-

pabilities offered by a distributed environment (workstation-mainframe-supercomputer),

but cannot afford the "overhead" of learning l:_he operating system commands for each

system they use. Methods developers have a si:_nilar problem, but at a lower level. They

cannot afford the _overhead" of learning a new set of system calls for each computer on

which they wish to implement their application code. The CSM Testbed addresses these

problems.

The CSM Testbed development environment was ported to the CRAY-2 to provide a high

end computational capability for structural analysis research. Earlier Testbed development

efforts were directed toward mainframes and minicomputers even though the complexity

of the structures that were being analyzed was growing. It was only through the struc-

tural analyses required during the space shuttle Challenger accident investigation and

subsequent recertification program (ref. 3) that the magnitude of the computational task

required for large-scale structural analyses was fully appreciated. After that experience, it

was clear that if this research Testbed was to be used to learn how to solve problems of

critical interest to NASA, the Testbed would have to be available on a true supercomputer.

To that end, the CSM Testbed was ported to the NAS CRAY-2 at the Ames Research

Center. This paper describes the implementation experiences, the resulting capability, and

the future directions for the Testbed on supercomputers.

PROGRAM STRUCTURE

The CSM Testbed program is an example of a modern software architecture designed to

support development of engineering analysis methods as well as to perform engineering

analyses. Its organization is illustrated in figure 1. The inner circle in figure 1, the

computer operating system, is provided by the computer vendor and is different for each

vendor. The outer ring in the figure, the development environment, insulates both the

user and the methods developer from those differences by providing a consistent interface.

The CSM Testbed is written primarily in Fortran and is organized as a single executable

file, called a macroprocessor. The macroprocessor calls structural applications modules

(also known as processors) that have been incorporated as subroutines. Applications mod-

ules are installed into the macroprocessor as they become accepted in the structural anal-

ysis community and are of a general interest to other researchers. The macroprocessor and

applications modules interface with the operating system for their command input and

data management functions through a set of "architectural utilities" that originated in a

software system called NICE (Network for Integrated Computational Elements) (ref. 4).

Processors access the Testbed utilities by calling entry points implemented as Fortran-77

functions and subroutines which are available to module developers in the Testbed object

libraries. Applications modules do not communicate directly with each other, but instead

communicate by exchanging named data objects in a database managed by a data manager

called GAL (Global Access Library). The user controls execution of applications modules

via an interactive or batch command input stream written in a command language, called

CLAMP (Command Language for Applied Mechanics Processors) which is processed by

CLIP, the Command Language Interpreter Prc_gram. Command language procedures for

performing complex analysis tasks may be clew loped and stored for future use.

To facilitate the development of new methods and algorithms, a capability for indepen-

dent executable programs to perform special _'unctions related to a Testbed analysis is

included. Applications may be developed independently, using the Testbed architectural

utilities and data management capabilities, and may be invoked from within a Testbed

command procedure or runstream; this type of program is called a Testbed external pro-

cessor. The macroprocessor and external processors may be used within a single Testbed

command input stream via the architectural utility, SuperCLIP (ref. 5), which performs

the interprocessor exchange via operating system calls which are invisible to the user. This

capability provides much of the flexibility required of the CSM Testbed as it relates to the

development of new applications.

For structural analysis research, both interactiw, and batch modes of operation are required

and both are supported in this program. Tl'_roughout the CSM Testbed development

effort, attention has been given to the problems associated with research codes and their

requirements for generality, while keeping a watch on overall efficiency. Efficiency affects

the overall size and complexity of the structured problems that can be considered, and if

current structures research problems are to be _olved, efficiency must be maintained.

The Testbed Command Lamzuaize

The Testbed command language, called CLAM P, is a generic language originally designed

to support the NICE system and to offer pr,)gram developers the means for building

problem-oriented languages (ref. 6). It may be viewed as a stream of free-field command

records read from an appropriate command _ource (the user terminal, actual files, or

processor messages). The commands are interpreted by a "filter" utility called CLIP, whose

function is to produce object records for consumption by its user program. The standard

operating mode of CLIP is the processor-command mode. Commands are directly supplied

by the user, retrieved from ordinary card-image files, or extracted from the global database,

and submitted to the running processor. Special commands, called directives, are processed

directly by CLIP; the processor is _out of the l,)op'. Transition from processor-command

to directivemode is automatic. Once the directiveisprocessed, CLIP returns to processor-

command mode. Directives are used to dynamically change run-environment parameters,

to process advanced language constructs such as macrosymbols and command procedures,

to implement branching and cycling, and to request services of the data manager. CLIP

can be used in thisway to provide data to a processor as well as to control the logicflow of

the program through a singleinput stream. All command language directivesare available

to any processor that uses the CLIP-Processor interfaceentry points.

Program execution begins with control transferred to the Testbed macroprocessor by the

computer operating system. Within the macroprocessor an entry point requesting a read

operation is called which begins parsing and interpretingcommand language directives.

This operation continues until a complete processor command record has been read and

processed by CLIP. That data record is then returned to the calling module to be in-

terpreted according to the application or macroprocessor originallyrequesting the read

operation. The next read operation continues the cycle until a command is encountered

which directs the program to terminate. This process not only provides for module se-

quence control,but also provides a powerful input data descriptionlanguage for preparing

processor input. Both capabilities are incorporated through the same applications language

environment.

The NICE Data Manager

The data manager within the CSM Testbed was derived from the Global Access Library

(GAL) concept developed at the Lockheed Palo Alto Research Laboratory (ref. 7). Meth-

ods for data management in structural analysis programs can be broken into three levels

of complexity: file systems, file partition systems, and data base systems (ref. 8). Since

GAL database files are subdivided or partitioned into data sets the Testbed data manager

is classified as a file partition manager. To a processor, a GAL data library is analogous to

a file. It must be opened, written, read, closed, and deleted explicitly. The global access

library resides on a direct-access disk file and contains a directory structure called a table

of contents (TOC) through which specific data sets may be addressed. Low level routines

access the GAL library file in a word-addressable scheme as described by Felippa in ref-

erence 9. The data management system is accessible to the user through the command

language directives and to the running processors through the GAL-Processor interface.

The actual I/O interface to the UNICOS TM operating system for the CRAY-2 is accom-

plished through a set of block I/O routines written in the C programming language. To

provide the efficiency required to process the vclume of data required for a complex struc-

tural analysis, all usual overhead associated with Fortran has been eliminated. Listings of

the routines used for block I/O in the Testbed are presented in Appendix A.

The global database is made up of sets of data libraries (GALs) residing on direct-access

disk files. Data libraries are collections of name_l data.sets, which are collections of dataset

records. The data library format supported by the Testbed is called GAL/82, which can

contain nominal datasets made up of named records. Some of the advantages to using this

form of data library are: 1) the order in which records are defined is irrelevant, 2) the data

contained in the records may be accessed from _he command level, and 3) the record data

type is maintained by the manager; this simplifes context-directed display operations and

automatic type conversion.

SuperCLIP Implementation

The SuperCLIP capability of the Testbed architecture performs interprocessor control,

allowing independent programs which use the Testbed architecture facilities (CLIP and

GAL) to be executed from within a single Testbed input stream. SuperCLIP handles the

interprocessor CLIP state preservation and re_toration so that the CLIP environment is

maintained across independent program executions. These independent programs can be

used in conjunction with the Testbed macroprc.cessor, other independent Testbed proces-

sors, or entirely alone, as appropriate to accomplish the required task. The implementation

of SuperCLIP is the most complex and machine dependent element of the Testbed architec-

ture software. To date it has been implementeci under VAXTU/VMS ru and the UNIX Tu

operating systems.

The operations performed by SuperCLIP to _ccomplish the processor exchange are as

follows:

1. The name of the executable file for the n_.w processor is pushed onto a stack data

structure called the Process Name Stack.

The CLIP data structures are saved. This i_ done by writing the contents of the CLIP

data structures to a file, named ZZZZZZZ, via the data manager. The structures

include the Decoded Item Table, Macrosymbol Table, Command Source Stack, Process

Name Stack, control characters, logical unit table, and list of active data libraries. All

o

open libraries are closed.

3. The process switch is performed. For the VAX/VMS version, this is done via the

LIBSRUN_PROGRAM system function. For UNIX, it is done via the EXECLP system

function. Both functions stop the current process and start the target process.

4. CLIP is initialized in the new processor. The new processor calls CLIP for data input;

CLIP tests for the existence of the ZZZZZZZ file to determine if this processor is

executing as the result of a SuperCLIP operation. If the file exists, the CLIP state is

restored.

5. The CLIP state is restored. The ZZZZZZZ file is read via the data manager to restore

the CLIP data structures. Non-scratch libraries that were open in the parent processor

are re-opened. The Command Source Stack is reconstructed so it has the same array

of open files, and script files are restored to their original positions. The ZZZZZZZ file

is closed with the delete option so it disappears.

A Testbed processor terminates via a SuperCLIP function which performs many of the

same functions described above. The first step is the only one which is different. Here

the name of the parent processor is extracted from the Process Name Stack, which is then

removed from the stack. If the stack is empty, a normal termination is performed. If the

stack is not empty, the parent processor becomes the target process and steps 2-5 above

are performed

The only part of the SuperCLIP operation which is different for the two implementations

is the process switch operation which requires different system function calls for the dif-

ferent systems. In the UNIX version, any files which were opened via the Fortran OPEN

statement must also be closed, since files are allowed to remain open across the EXECLP

calls.

Structural Application Modules

The application modules are installed in the Testbed system in a macroprocessor config-

uration. They perform functions related to a structural analysis task, including model

definition, element interconnection analysis, system matrix assembly and factoring, static

stress analysis, eigenvalue analysis, thermal analysis, data display, and postprocessing

functions. Additional pre- and post-processing functions have been implemented as in-

dependent executable programs called external processors. The initial structural analysis

functions were implemented by interfacing processors from the SPAR structural analysis

system with the NICE architecture utilities (ret. 10).

Since the initial installation, many new module, s have been developed to replace or com-

plement the original functions. A software "shell" and utilities have been developed to

facilitate installation of new types of structured elements into the Testbed. Several ele-

ment processors have been developed based or_ this shell and have been installed in the

Testbed. Pre- and post-processing functions as well as modules implementing new solution

algorithms have also been developed and installed. A description of the current analysis

capability of the Testbed is presented in referer_ce 11.

The architecture of the Testbed supports the :independent development of new software

capabilities by structural analysis researchers and numerical methods developers via the

SuperCLIP facility. This facility and the supporting architectural utilities allow the macro-

processor modules and independent programs i;o access command language symbols and

data library contents.

COMPUTER ENVIRONMENT

The CSM Testbed was originally developed on a VAX 11/785 computer using the VMS

operating system. In order to address the new c,_mputer architectures, it became necessary

to migrate to the UNIX environment.

The Testbed relies heavily on the available UNIX tools to provide a common developer

interface across the distributed environment. In addition to the UNIX tools, system in-

dependent precompilers that support condition_l compilation and text insertion complete

the requirements for maintaining the software for the distributed environment.

Machines

The Testbed is currently operational on the following types of computers: VAX/VMS,

MicroVAXrM/ULTRIXTM, SUNTM/UNIX, FLEX/32T_/UNIX, and CRAY-2/UNICOS.

This wide range of computer capabilities create a development environment that makes

maximum use of computers at all levels of capability. It is possible to begin an application

task at a small single user workstation, develoI, and test new algorithms using small test

cases on a minicomputer, and apply those algorithms on large complex structures using the

resources of a supercomputer, all under one app] ication environment, all without modifying

any of the Fortran code from that developed on the original workstation.

A single application task often spans the entire range of computers. Model development

usually occurs on a workstation, and the final analysis is usually performed on a super-

computer. Although the data libraries are not readable in binary form among the non-

homogeneous computers, the Testbed has commands which allow the user to format data

into text files on one computer, and after transferring the text files to the target computer,

to restore the data on the target computer for further Testbed processing. These com-

mands are typically used to transfer analysis results from the CRAY-2 to a local MicroVAX

workstation for graphics postprocessing.

Distributed Environment

The CSM computers at NASA Langley are linked via the Langley local area network to the

NASNET computer network as well as many other government and university computer

systems. This network gives researchers the capability of developing and testing new

methods in several different computer environments, selecting the machine characteristics

which are appropriate for the type of analysis to be performed.

All computers available to the NASA Langley CSM researchers are available through the

Internet TCP/IP communication protocol. Individual computers are linked via ethernet

within buildings at Langley Research Center. Gateways are provided between buildings

by a Pronet-10 TM token passing ring. A one megabit/second communication link using a

Vitalink TM bridge over a terrestrial, T1, circuit connects Langley Research Center to the

Ames Research Center and provides the backbone for the Langley-Ames NASNET con-

nection to the NAS CRAY-2. The resulting network has provided an effective interactive

capability as well as high speed file transfer for CSM researchers. Supercomputer resources

are provided directly to the individual workstation. The high speed of the long distance

communication link gives almost transparent interactive use as well as access to files. Even

the large data library files created by the Testbed are easily accessible under this network

for transmission to graphics workstations for postprocessing.

THE PROGRAM CODE

Master Source Code

The program code for all target versions of the Testbed is maintained in single copies of

the source files, in a format called Assembled Master Source (AMS) form. Embedded pre-

processing commands allow selective conditional precompilation by machine-independent

utilityprograms. An example of thisform isgh'en in Appendix B, which contains a listing

of the main program for the Testbed macroprccessor in the AMS format. Procedures for

extracting specifictarget versions of the compiler source code have been developed for all

the systems on which the Testbed has been installed.All source code filesand procedures

are maintained with the Revision Control Sy:_tem on a MicroVAX computer using the

ULTRIX operating system.

The architecture code is made up of approxirf ately 650 modules with about 83000 lines

in source code and include files. The applicati m code is made up of approximately 1300

modules with about 95000 lines in source code and include files. Distribution of the code

in the UNIX environment is accomplished by packaging the source code, makefiles, and

scripts in a single file using the tape archive ,ltility (tar); this distribution file occupies

approximately 8 megabytes on disk.

Machine Independent Tools

Two utility programs, MAX and INCLUDE, w:ilich operate on the master source files were

originally developed by Carlos Felippa at Locl.:heed Palo Alto Research Laboratory (ref.

12). The MAX utility allows distribution of source code for selected target compilers,

computers, and operating systems from a Master Source file which supports the targets.

The INCLUDE utility allows text insertion from files named in the source code, similar to

the "include" facility of VAX Fortran, in a machine independent manner. Both of these

utilities have been modified from the original VAX versions to execute in a UNIX envi-

ronment and under the UNICOS operating sy:;tem on the CRAY-2 computer. The main

program of the Testbed macroprocessor is presented in Appendix B along with the two

specific include files required for compilation. The processor names that are known to the

macroprocessor are established in the file named procs.inc. The correspondence between

the processor name and the subroutine called when the name is encountered in a com-

mand is established in the file named subcalls.i_lc. These files are inserted into the Fortran

source prior to MAX precompilation. Maintaining the processor-specific information in

the separate include files allows the macroprocessor to be customized for the application

by changing only the two included files and re_ ompiling the main program.

Languages

Fortran is the primary language for the Testbed source code. The Testbed architecture

modules are written in Fortran-77, with extenAve use of character variables, and a small

amount of assembler and C code in the low-level I/O modules for the data management

functions. The application modules are written in both Fortran-66 and Fortran-77, the

combination of which has presented some limitations to naming conventions for data base

entities and processors because of the old code used as a core analysis capability. However,

the flexibility of the supporting NICE modules is maintained for use by new application

modules.

Procedures for Building

Procedures and scripts for preprocessing, compiling, and linking the Testbed have been

developed for the target systems. The scripts on all the UNIX-type systems are almost

identical, with differences in the keys used for MAX precompilation, the name and options

for the Fortran compiler to be used, and the name and options for the loader program to

be used. A set of "makefiles" is used, with a top-level "make" invoking lower-level "makes"

to create the required object files and libraries in the correct order. The procedures for

building the code under a VMS TM operating system are similar in organization but are

implemented in the DCL command language without all the power and flexibility of the

UNIX make utility.

VERIFICATION PROCEDURES

In order to verify the correct installation of the Testbed code, programs which test the

operation of the programmer interface with the command language interpreter and with

the data manager are built on the target computer and executed after the object libraries

for that software have been created. Correct results (manually verified at present) from

executing these programs verify the installation of the command language and data man-

ager. Once this successful installation has been established, the macroprocessor is built

and the scripts for the demonstration problems may be executed. These scripts are written

in CLAMP, which is portable across all the different computer systems where the Testbed

has been installed. System dependent commands such as those for deleting files, redirect-

ing input and output, and invoking execution of the Testbed are the only differences in

the text of the demonstration problem scripts. These scripts also serve the purpose of

providing a variety of examples of Testbed usage for new users.

10

CRAY-2 IMPLEMENTATION

Installation of the Testbed on the NAS CRAY-2 computer was accomplished over a period

of about one month in 1987 shortly after th_. computer was made available to NASA

Langley users. The Testbed code was the large:it software system to be ported to the NAS

computer, and consequently many problems which had not been experienced by other

users had to be diagnosed and overcome.

The first step of the installation, which had to be performed before any compilation could

be done, was to build the MAX and INCLUDE utilities under UNICOS. This required

writing an interface between the Fortran program and the C language argc and getarg

functions not provided in the Fortran libraries. Next, compilation of the NICE software

was accomplished and object libraries created. The test programs for the NICE software

were built and executed successfully. Then the macroprocessor, application modules, and

utility routines were compiled. Finally, the lint_ing of the executable file was performed.

Compilation Problems

Because the Testbed Fortran code uses charact_T variables heavily, the CFT77 TM compiler

had to be used for compilation. Most problems ,_'ncountered with this compiler were related

to its handling of character variables and formatting screen and printed output and were

not encountered until execution time. Most of these were resolved by inserting code blocks

for the CRAY/UNICOS version into the ma_ter source files so that the modifications

could be carried along into future versions of the code. The porting of the Testbed to the

CRAY-2 was accomplished using a very early w;rsion of CFT77 under UNICOS. Although

several compiler errors were discovered with t_aat compiler, no errors that could not be

easily avoided were uncovered. The compiler e_rors that were discovered have been fixed

in subsequent releases of the CFT77 compiler.

Fortran/C Interface

One problem related to CFT77 character han.iling which had to be resolved twice was

the difference in data structures for CFT77 character arguments and C compiler character

string arguments. This problem arises where t!m Fortran code for the data management

functions calls low-level C language I/O functioas. The CFT77 compiler does not conform

to the same standard as the Fortran compilers on other UNiX-type systems. To overcome

the problem, a C structure was defined in the C functions to correspond to the CFT77

character argument; upon entry to the C function, a transformation was performed from

11

the argument structure to a C character string.When version 3.0 of UNICOS was installed

with a new CFT77 compiler, the CFT77 character variable structure was changed without

documentation, so the C functions had to be modified to accommodate the new structure

after the differencewas discovered. The definitionof the Fortran and C character pointer

structures under UNICOS 3 axe:

typedef struct {

)
typedef struct {

ushort offset: 3; /* string offset in bytes *I

ushort filer1: 3; /* length 'bits' count */

ushort length: 23; /* string length in bytes */
ushort filer2: 3; /* offset 'bits' count */

ushort addres: 32; /* string address */

chptrf; /* CHar PoinTeR Fortran *I

ushort offset: 3; /* string offset in bytes */

ushort filer3: 29; /* unused space ,/

ushort addres: 32; /* string address ,/

chptrc; /* CHar PoinTeR C-lang. */

The called C function assigns the offset and address fields of the input Fortran pointer

to the respective fields of the C pointer before moving the characters to a local character

array. The use of these structures is illustrated in the block I/O routines in Appendix A.

Loader Problems

The initial installation procedures used the LD loader for linking the executable file. When

the optimization options for the CFT77 compiler had been used in compilation, all sub-

routine argument addresses and some temporary variables were defined in local memory

by the compiler. The LD loader concatenates the local memory segments for all modules,

so attempting to link all of the application modules and libraries in the macroprocessor

resulted in overflow of local memory (40000s words) and failure of the load. The LMSTAK

utility to enable overlaying local memory segments was used, but the resulting program

would not execute. In order to check out the operation of the software before resolving the

local memory overflow problem, all the code was recompiled without optimization, linked

successfully, and tested.

Later, following the suggestion by the NAS CRAY analysts, the segmentation loader

(SEGLDR TM) was used. This loader performs the local memory overlay correctly, so

the optimized object code could be used. No execution errors were encountered as a result

of using the optimizing compiler. Performance was improved by a factor of 3 in CPU us-

age with the optimized code for most of the demonstration problems executed. However,

vectorization is not used efficiently in this version of the code because of the short vector

12

lengths actually used (< 6 in a critical area). M ach greater improvements should be gained

by tailoring the matrix operations in the code to take advantage of vectorization.

Installation of a new CFT77 compiler with or:tions to enable the user to control the al-

location of local memory has since eliminated the requirement to use SEGLDR for the

Testbed to overlay local memory.

Optimization

In order to identify the most promising are_ for performance improvement, two utili-

ties were used. First, the FLOW utility was _lsed, after recompilation of the code with

the CFT77 flowtrace (-ef) option. The resulting executable file was used to run several

demonstration problems performing different types of analysis functions. The FLOW util-

ity analyzed the output files and identified the modules which were using most of the CPU

time for the executions. A calling tree diagram was also obtained in the FLOW output,

which was helpful in analyzing the execution path of the program.

After identifying the biggest CPU users, the l'ortran source code for those modules was

sent to an IRIS TM workstation on which the [ORGE TM software was installed. FORGE

was used to insert timing function calls into th_ *modules which were then sent back to the

CRAY, compiled and linked into the executable. The demonstration problems were run

again and very detailed analyses of the executic.n of the modules of interest were obtained.

These analyses led to replacement of some cocle with UNICOS library function calls and

some other minor revisions. This work resulted in an improvement of about 12% in the

performance of the affected analyses.

This installation of the Testbed on the CRAY-2 is allowing researchers to analyze much

larger problems in a reasonable turnaround tithe than has been possible with the mini-

computer installations previously available.

STRUCTURAL ANALYSIS METHODS DEVSLOPMENT EXPERIENCES

Workstation development of new analysis code and procedures

Researchers at NASA Langley have been usir_g a distributed computer environment to

develop new analysis modules and procedures, with each researcher working in the Testbed

environment on a local computer or workstatio_l of his preference. Procedures, scripts and

makefiles similar to those for maintaining the complete Testbed system are available to

the Testbed developers for building external processors or customizing macroprocessors.

13

The researcher has to be concerned only with the code for his new module, calling utility

subroutines from Testbed libraries, where applicable, and using the interface routines for

command input and data management functions. There are minimal requirements pre-

scribed for initialization and termination to ensure compatibility with installed processors.

Where a new module must interact with other Testbed modules via the data base, it must

conform to the data structures defined by the existing modules. The new module must

have a name different from any analysis module installed in the Testbed if it is to be exe-

cuted within a CLAMP procedure along with Testbed modules. Typically, the module is

tested on the local workstation or minicomputer to verify its operation before it is sent to

the CRAY-2 for further testing.

Once the new module has been initially tested on a local computer, the source code and/or

procedures are transferred to the NAS CRAY-2 system via a network, and an executable

file is built on the CRAY using the same procedures as on the local computer. CLAMP

scripts for verifying the processor operation on the local computer are also portable from

the local computer to the CRAY-2.

CRAY-2 UNICOS Environment

A shell script and makefile used for building an external processor on the CRAY-2 computer

are shown in Figures 2 and 3. The script refers to an environment variable CSM_ROOT

which contains the name of the root directory for the Testbed software files. This variable

is passed to the makefile as a macro variable to be used for defining the names of utility

object files and library files to be linked with the new module. The makefile uses the MAX

and INCLUDE utilities and requires that the user have his PATH environment variable

defined so that those files are accessible.

A Iogin script is provided for Testbed users to execute to define their environments for

compatibility with these scripts. The user should determine the pathname for the root

directory of the Testbed files on each of the computers where the Testbed is to be used. To

execute the Testbed login script on a particular computer at login time, the user should

insert the following commands in his ".login" file:

setenv CSM_ROOT "system_dependent_path"

source $CSM_ROOT/login

14

To precompile, compile, and link a new module into an executable external processor, the

following command is used:

bldextp module_name [object_file_name:3]

where module_name is the root name of the mocl ule source file, which resides in the current

directory with extension ".ares"; the optional arl;ument, object_file_names, is a list of object

files to be linked with the module. The script automatically links in the Testbed utilities,

so these do not have to be included in the list.

The command to execute the Testbed macropr,_cessor is:

testbed

The user's PATH environment variable is defim'.d in the login script so that the directory

in which the Testbed executable resides is searched by the shell when the above command

is entered.

An example shell script for executing the Testbed in conjunction with an external processor

is shown in Figure 4.

FUTURE DIRECTIONS FOR THE CSM TESTBED

The future directions of the CSM Testbed will be tied to developments in several other

areas, particularly the evolving computer hardware industry. The changes in computer

hardware will, out of necessity, result in changes to operating systems and systems software

in order to take advantage of the changes in hardware. New approaches in applying

numerical analysis will result from changes in computer hardware and software. This

evolving technology provides more and faster computer architectures but only at the cost

of software compatibility and complexity.

The CSM Testbed is being extended to explcit the multiple instruction multiple data

(MIMD) computers that are becoming generally available. To support analysis on MIMD

computers, the command language is being rewritten and advanced numerical algorithms

are being developed

Command Language Enhancements

In order to provide a better Testbed environment, enhancements to the command language

are being developed. The current command laaguage capability was developed over the

15

course of a decade (ref. 13). The present version of the command language interface

program (CLIP) contains 129 subroutines and 18,000 lines of source code.

Enhancements to CLIP are underway to include the implementation of a table driven

parser and lexical analyzer. The UNIX utilities LEX and YACC will be used to implement

an easily extendable language. This language will be primarily the CLAMP language

implemented by Felippa in the NICE computer environment with modifications to remove

context sensitive constructs from the language. Care is being taken to retain all the

problem solving capability proven effective over the last decade while adding generality.

As a side benefit we expect the resulting interpreter to be more efficient and maintainable

in addition to providing the required extendability. This extendability will be tested by the

addition of language directives to control processor/task allocation and synchronization at

a high level through CLAMP directives. The resulting capability will provide a convenient

research environment for the structural analyst to investigate parallelism without relying

on computer dependent coding.

Advanced Numerical Algorithms

Numerical analysts in the CSM activity are developing many new algorithms designed to

take advantage of the vector processing capability offered by many modern computers. In

the past, the sparse nature of the matrices that dominate structural analysis computa-

tions has made vector processors of limited use. Now, however, in addition to numerical

algorithms for vector computers, CSM researchers are developing algorithms for MIMD

computers. Recent research on algorithms for vector and MIMD computers are described

in references 14, 15, and 16. Work will continue on the development of numerical algo-

rithms that will take advantage of both the vector capabilities and the MIMD capabilities

of future computers.

CONCLUDING REMARKS

The CSM Testbed is a useful and powerful development environment for developing struc-

tural analysis and computational methods. The Testbed development environment pro-

vides the mechanism to allow researchers concentrating on different parts of the structural

analysis problem to communicate on solutions to problems that directly relate to current

NASA needs. The transfer of technology among researchers in computer science, numer-

ical analysis, and structural engineering can now be accomplished more effectively than

16

waspreviously possible.

The CRAY-2 provides an extremely powerful lop-end capability for performing structural

analysis applications in a networked distribut,_d environment. It is possible for the same

Testbed applications runstream to be used on computers ranging from a workstation run-

ning UNIX through the CRAY-2 supercomput,_r. A runstream may now be checked out on

a workstation for a small model prior to perfolming fullscale calculations on the CRAY-2.

Since the CSM Testbed was operational in a UNIX environment prior to converting to the

CRAY-2, the implemention under UNICOS was accomplished without significant prob-

lems. The Testbed program was made operational under a pre-release CFT77 compiler.

Although several compiler errors were found, corrections were possible with the help of

the Cray analysts.

Planned development of the CSM Testbed on ::;upercomputers will involve extensions that

will allow researchers to develop combined vecl or/MIMD applications methods in an inte-

grated environment. The integrated environm,'nt is characterized by a common operating

system, common file system, and usually a cor amon administrative system.

ACKNOWLEDGEMENTS

Prior experience of Dr. Frank Weiler of the Lo,:kheed Palo Alto Research Laboratory with

the UNICOS compilers during installation of the STAGS-C1 structural analysis code on

the CRAY-2 was extremely valuable to the success of the Testbed installation. Assistance

and advice given by the NAS consultants is gratefully acknowledged.

17

REFERENCES

1. Knight, Norman F., Jr.; and Stroud, W. Jefferson: Computational Structural Mechanics:
A New Activity at the NASA Langley Research Center. NASA TM-87612, September
1985.

2. McLean, Donald M.: MSC/NASTRAN Programmer's Manual, MSC/NASTRAN Version
63. MSR-50, pp. 1.1-4, October 1983.

3. Knight, Norman F., Jr.; Gillian, Ronnie E.; and Nemeth, Michael P.: Preliminary P_-D
Shell Analysis of the Space Shuttle Solid Rocket Boosters. NASA TM-100515, November
1987.

4. Felippa, Carlos A.: Architecture of a Distributed Analysis Network for Computational
Mechanics. Computers and Structures, Vol. 13, 1981, pp. 405-413.

5. Felippa, Carlos A.: The Computational Structural Mechanics Testbed Architecture: Volume
2- Directives. NASA CR-178385, 1988.

6. Felippa, Carlos A.: The Computational Structural Mechanics Testbed Architecture: Volume
1 - The Language. NASA CR-178384, 1988.

7. Wright, Mary A.; Regelbrugge, Marc E.; and Felippa, Carlos A.: The Computational
Structural Mechanics Testbed Architecture: Volume 4 - The Global-Database Manager
GAL-DBM. NASA CR-178387, 1988.

8. Hurst, P. W.; and Pratt, T. W.: Executive Control Systems in the Engineering Design
Environment. AIAA Paper No. 85-0619, 1985.

9. Felippa, Carlos A.: Fortran-77 Simulation of Word-Addressable Files. Advanced Engi-
neering Software, Vol. 4, Number 4, 1982, pp. 156-162.

10. Lotts, C. G.; Greene, W. H.; McCleary, S. L.; Knight, N. F., Jr.; Paulson, S. S.; and
Gillian, R. E.: Introduction to the Computational Structural Mechanics Testbed. NASA
TM-89096, 1987.

11. Knight, N. F.; McCleary, S. L.; and Macy, S. C.; and Amminpour, Mohammad A.: Large-
Scale Structural Analysis: The Structural Analyst, the CSM Testbed, and the NAS System.
NASA TM-100643, 1988.

12. Felippa, Carlos A.: MAX and Friends. NASA CR-178383, 1988.

13. Felippa, Carlos A.: A Command Reader for Interactive Programming. Engineering Com-
putations, Vol. 2, Number 3, Sept. 1985, pp. 203-237.

14. George, J. A.; and Liu, J. W. H.: Computer Solution of Large Sparse Positive Definite
Systems. Prentice-Hall, Englewood Cliffs, N. J., 1981.

15. Poole, E. L.; and Overman, A. L.: The Solution of Linear Systems of Equations with a
Structural Analysis Code on the NAS CRA Y-_. NASA CR-4159, 1988.

16. Storaasli, O. O.; Poole, E. L.; Ortega, J.; Cleary, A.; and Vaughan, C.: Solution of
Structural Analysis Problems on a Parallel Computer. AIAA Paper Number 88-2287,
1988.

TRADEMARKS

UNIX is a registered trademark of AT&T. CRAY and UNICOS are registered trademarks
and CRAY-2, CFT77, and SEGLDR are trademarks of Cray Research, Inc. ULTRIX is a
registered trademark and VAX, MicroVAX, and VMS are trademarks of Digital Equipment
Corporation. SUN is a trademark of Sun Microsystems, Inc. FLEX/32 is a trademark of
Flexible Computer Corporation. IRIS is a trademark of Silicon Graphics, Inc. FORGE
is a trademark of Pacific Sierra Research. PRONET-10 is a trademark of Proteon, Inc.
VITALINK is a trademark of Vitalink Corporation.

18

Development
Environment

Computer Specific

Operating System

3omputer_|

_)perating __Sy__l_

Figure 1. CSM Testbed Organization

19

#{ /bin/sh

#

Shell script for invoking make to build an external processor executable;
Environment variable CSM_ROOT must be defined prior to invoking this script.
..

Usage: bldextp processor_name [other_bjects]
where: processor_ame is the name of the executable file to be built;
(the source code for the processor must be in
a file of the same root name with extension .=ms)

other_bject8 is an optional list of full pathnames of object files
to be built and linked with the processor object,
Testbed utilities and NICE libraries
..

case $# in

O) echo 'Usage: bldextp processor.name [other_bjects]' 1>&2 ; exit 2;;
2) EXTP-$1; shift
eoac

..

Check to make sure shell variables are defined
..

case "$CSM_ROOT" in

"") echo 'CSM environment variables must be set before invoking bldextp.' l>k2
exit 2

esac
..

make other object files first
..

for i in $*
do

echo Making $i
FlLE='basename $i .o'
DIR-'dirname $i'
(case "$DIR" in

"") ;;
*) cd $DIR

esac

make -f $CSM_ROOT/sam/tbo.mk SFILE.o CSM.ROOT=$CSM_R00T \
MAXKEYS-"NICE EXTP TEK")

case $? in

o) ;;
*) exit 2

esac
done
..

make external processor object and executable
..

echo Making $EXTP
FILE-'baeename $EXTP'

DIR='dirname $EXTP'

FILE='basename $FILE .o'

(case "$DIR" in

"") ;;
*) cd SDIR

esac

make -f $CSM_ROOT/sam/tbo.mk EXE=$FILE CSM_ROOT=$CSM.ROOT OBJS="$*" \
MAXKEYS="NICEEXTP TEK")

Figure 2. Shell script for building a Testbed external processor

2O

tbo.mk
#
Makefile for building a Testbed object or e:_ecutable file

#
Build an object file for a Testbed module from an ANS file.

Link the object files with Testbed utility," object files and
NICE libraries.
#
..

Macros (Make macros which may be overridden on the make command)

..

CSM_ROOT must be defined on the make command
CSM.J40D - $(CSM_ROOT)/sam/mod
CSM_UTL = $(CSM_ROOT)/sam/utl

EZE - testbed
FC = cft77
FFLACS - -a static -ecrsx

INCDIR -
LD = seglclr
LFLAGS -
XAZKEYS = NICE TEK
NICELIBS = $(NLB)/clp861b.a \

$(NLB)/galS61b.a \

$(NLB)/dmgS61b.a
$(NI.B)/utlS61b.a _

$(NLB)/bioS61b.a
NLB = $(CSM_ROOT)/nice/lib

OBJS -
UTILS = $(CSMJ4OD)/gsutil.o

$(CSM_qOD)/nsutil o \
$(CSMJ4OD)/nsparlibl.o \

$(CSMJ4OD)/nsparlib2.o$(CSM_qOD)/nsparlib3.o

$(CSM_UTL)/plotlO.a
...

Suffix Rules
...

.SUFFIXES:

.SUFFIXES: .ams .o
Transform .ams file to .o file; use include and max utilities, then compile

.ams.o:

include -i $*.ams -o $*.tmp -d $(INCD[R)
- rm $*.f
max /wc/uc/for/sic/ti/mach =unix -i $*.tmp -o $*.f $(MAXKEYS)

- rm $*.tmp
$(FC) $(FFLAGS) $*.f

rm $*.f
...

Targets
...

Executable depends on an object file with the same root name ;
link with named objects, utilities, and NICE libraries

$(EXE): $(F__).o
$(LD) $(LFLAGS) -o Se $@.o $(OBJS) $(_JTILS) $(NICELIBS)

Figure 3. Makefile for building _ Testbed external processor

21

time testbed << \eof
*SET ECHO OFF

*open I cube.lO1
*PROCEDURE CUBE
*DEF NN -= 7

*DEF/g LL == 22.222222
*DEF NNMI -< <NN> - 1>
DEF NNNN =< <NN><NN> >
DEF JNT ,,< <NNNN><NN> >

[XQT TAB
onl ine=O

START <JNT> 4,5,6

[XRT AUB
online=O
TABLE(NI,=31,NJ=I): PROP BTAB 2 21
J=I
• 101>

• 1E-6>
-.3E-7 .1E-6>

-.3E-7 -.3E-7 .1E-6>
0.0 0.0 0.0 .26E-6>
0.0 0.0 0.0 0.0 .26E-6>
0.0 0.0 0.0 0.0 0.0 .26E-6>
0.0 0.0 0.0>
t.o t.o _.o ,o _.o _.o

[XqT TAB
online-O
JLOC

*DO N = <NN>

*DEF/t JCNT = 1

*DEF/g Z = 0.0
*DF..F/8 DELZ =< <LL>/<NNMI> >
*DO $I-1,<N>

<JCNT> O. O. <Z> <LL> 0.0 <Z> <NN> I <NN>
<NN> O. <LL> <Z> <LL> <LL> <Z>

*DEF/g Z =< <Z> + <DELZ> >
*DEF/I JCNT-< <NNNN> + <JCNT> >

*ENDDO
MATC : 1 10. +6 .3 .101
CON 1 : ZERO 1,2,3:1 : <NN> : <NNNN>
*DF./' N =< <NNNN> - <NN> + 1 >
<N>

[XQT ELD
onltne=O
SS1

I <NNMI> <NNMI> <NNMI> I <NN> <NNNN> 0 1

[xqt pfmx , Execute external processor pfmx (experimental version of PFM)
reset method=5 .maxcon=8,nalg--O

[XOT TOPO
reset maxsub=40000, LBAM=12288

stop
*sho macros

[xqt dcu
toc 1

*END

*CALL CUBE
[XQT EXIT

\eof

Figure 4. Example script executing Testbed with external processor

22

Appendix A. Testbed CRA, Y-2 Block I/O Routines

IOXCLO - (',lose a file

I /*
2 *

3 *

4 *

5 *

6 *

7 *

8 *

9 *

10 *

11 *

12 *

13 *

14 *

15 *

16 *

17 *

I8 *

19 *

20 *

21 *

22 *

23 *

24 */
25

26 #include

27 #include

28 #include

29 #include

IOXCLO: close (/delete) a file from landon i/o, given it's descriptor

Modified for UNICOS 3.0 eft77 charactE_r arguments

this routine is called in fortran (f77) via:

call IOXCLO (fd, opt, path, size, bksz, blks, msg)

input arguements:

fd

opt

path

- file descriptor for file (for closing)

- 1 character close option flag, where

opt - ' ' for normal close

'd' for close/delete option

- complete 'path' name of fi]e (for delete opt)

output arguements:

size

bksz

blks

msg

- size of file (in bytes)

= optimum block size of file

- number of blocks in file

= error return message (blank if no error)

<stdlo.h>

<sys/types.h>

<sys/file.h>

<sys/stat.h>

30

31 typedef struct { ushort offset: 3;

32 ushort filerl: 3;

33 ushort length: 23;

34 ushort filer2: 3;

35 ushort addres: 32;} chptrf;

36

37 typedef strnct { ushort offset: 3;

38 ushort filer3: 29;

39 ushort addres: 32;} chptr=;

40

41 *********************

42 * entry - IOXCL0 *

43 *********************

44

45 IOXCLO(fd, opt, path, size, bksz, blks. ms_)

46

47 chptrf path, opt, msg ;

48 long int *fd, *size, *bksz, *blks ;

A-1

49

5o {

51

52

53

54

55

56

57

58

59

6o

61

62

63

64

65

66

67

68

69

7o

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

9o

91 /*

92 •

93 *

94 */

95

96

97

98

99

100

I01

extern int

extern int

errno;

BLKSIZ;

chptrc

int

char

cpath, copt;

lpath, lopt, lmsg ;

sop, *pp, fnu[256];

int i;

struct star stbuf;

errno - O; /* clear the error code no. */

/* create local C-pointers form FORTRAN-pointers */

cpath.offset = path.offset;

cpath.addres - path.addres;

lpath - path.length;

copt.offset = opt.offset;

copt.addres = opt.addres;

lopt - opt.length;

lmsg - msg.length;

pp = cpath;

op - copt;

/* first, extract the file's stats for return */

if (fstat(*fd. kstbuf) == -1)

{
*size = O;

*bksz = O;

*blks = O;

IOXERR_(errno. msg. lmsg);

)
else

{

*size = stbuf.st_size;

/* error in status request ? */

/* clear file statistics */

/* extract error number */

/* valid status info */

/* set 'size' - file size (char) */

*bksz - stbuf.st_blksize;

*blks - stbuf.st_blocks;

IOXERR_(NULL. msg, lmsg); /* clear error number

/* second, close the file pointed to by 'fd" */

if (close(*fd) == -I)

{
/* error on close request ? */

,/

A-2

102

103

104

108

106

107

108

I09

II0

III

112

113

114

115

116

I17

118

119

120

121

122

123

124

125

126 }

IOXERR_(errno, ms 8,

return;

}

ImsS); /* extract error number */

/* last, check option and delete file if request is on */

if (*op =- 'd') /* (_elete option on ? */

{

/* transfer FORTRAN character etrinl!; (path) to local array fnam[] */

i = O;

while ((*pp != '\0') kk (*pp :=

{

fnam[i++] = *(pp++) ;

}

fnam[i] = '\0';

if (unlink(fnam) =- -2)

{

IOXERR_(errno. ms s, Imsg);

}

}

return;

' '_i kk (i < Ipath))

/* ,!,rror on delete request ? */

/* extract error number ,/

A-3

IOXERR - Return a system error message, given the error no.

1 /*

2 *

3 *

4 *

5 *

6 *

7 *

8 * eX'llO

9 *

10 *

ll *

12 *

13 *

14 *

15 *

16 *

17 *

18 */

19

IOXERR: return a system error message, given 'erno'

Modified for UNICOS 3.0 cft77 character arguments

IOXERa_(erno, msg, lmsg)

input arguements:

= system error nmaber

if erno - O,

el"no • O,

erno > sys_nerr,

lmsg - length of message string 'meg'

output arguements:

meg = error message (blank if 'erno' == NULL)

20 #include <stdio.h>

21 #include <errno.h>

22

23 lOXERR_(erno, meg, lms 8)

24

25 char *meg;

26 long lnt erno, lmsg;

27

28 {

29 extern int sys_nerr;

30

31 extern char *sys_errliet[];

32

33 strncpy (meg, " ", lmss);

34 if (erno == NULL)

3s (
36 return;

37)
38

39

40

41

42

43

44

48

46

47

48

49

50)

NULL error, terr = 0

undefined, ierr = -1

undefined, ierr = -1

/* largest error no. for which system */

/* system tables has a defined message */

/* table of system error messages */

/* NULL error message returned */

if (erno>O t& erno<sys_nerr)

(
strncpy(msg, sys_errlist[erno], lmsg);

printf (" IOXERR: ierr- _4d (_s)'*, errno, sys_errlist[erno]);

else

strncpy(msg, "ERROR: unknown error value _, lmeg);

printf (" IOXERR: ierr - _4d (unkown error value ?)", errno);

)
return;

A-4

IOXLOC - Extract the current position within a file

t /*
2 *

3 *

4 *

5 *

6 *

7 *

8 *

9 *

I0 *

II *

12 *

13 *

14 *

15 * size

16 * bksz

17 * blks

18 * pos

19 * msg

20 *

21 */

22

23 #include

24 #include

25 #include

26 #include

27

IOXLOC: extract the current position _ithin a file

Hodified for UNICOS 3.0 cft77 character arguments

this routine is called in fortran (f77) via:

call IOXLOC (fd, size, bksz, blks, pos, ms 8)

input arguements:

fd = file descriptor for file

output arguements:

- size of file (in bytes)

- optimum block size of file
= number of blocks in file

= position within file returned by lseek(2)

= error return message (blank if no error)

<stdlo.h>

<sys/types.h>

<sys/file.h>

<sys/stat.h>

28 typedef struct { ushort offset:

29

30

31

32

33

34 /*
35 *

36 *

37 *

38 */
39 #define L_SET 0

40 #define L_INCR 1

41 #define L_XTND 2

42

43 lOXLOC(fd, size, bksz, blks, pos, msg)

44

45 chptrf

46 long int

4T

48 {

49

50 int lmsg;

51 extern int errno;

3;

ushort filerl: 3;

ushort length: 23;

ushort filer2: 3;

ushort addres: 32;} chptrf;

the following flags represent file positioning

parameters used by lseek(---)

/* absolute offset (from BOF) */

/* relative to current offset */

/* relative to end of file */

meg;

*fd, *size, *bksz, *blks. *poe;

A-5

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

e9 /*
70 *

71 *

72 ,/
73

74

75

76)

extern int BLKSIZ;

struct star stbuf;

lms K = msK.length ;

*pos - lseek (*fd, OL, L_INCR);

if (fstat(*fd, &stbuf) == -1)

(

*size = O;

*bksz = O;

*blks = O;

IOXERR_(errno, msg, lmsg);
)

else

{

*size = stbuf.st_size;

*bksz - stbuf.st_blksize;

*blks - stbuf.st_blocks;

YOXERR_(NULL, msg, lms g);
)

return;

/* extract position within file */

/* error in status request ? */

/* clear file statistics */

/* extract error number */

/* valid status info */

/* set 'size' = file size (char) */

/* clear error number ,/

A-6

IOXOPN - Open a file for random I/0

i /,
2 *

3 *

4 *

S *

6 *

7 *

8 *

9 *

I0 *

II * path

12 * opt

13 *

14 *

15 *

16 *

17 *

18 *

19 *

20 *

21 *

22 *

23 *

24 *

25 *

26 *

27 *

28 *

29 *

30 */

31

32 #include

33 #include

34 #1nclude

35 #include

36 #include

37

38 #include

z9 /*
40 *

41 *

42 *

43 */

44 #define

45 #define

46 #define

47 #define

48

49 int

5O

S!

IOXOPE: open a file for randon i/o. g:_.ven it's path name

Modified for UNICOS 3.0 cft77 characte:_: arguments

this routine is called in fortran (f77} via:

call IOXOPE (path, opt. fd, size. bksz. Ibks. meg)
..

input arguements:

= complete 'path' name of fil_

= 2 character open option fla_s, where

opt[O] = 'r' for

'W' for

• ' for

opt[l] - "o' for

'n' for

'8' for

. s

output arguements:

'read_only'

'write_app_md'

both 'read.write'

'existlng' file open

'create_ne_' file open

'scratch' file open

for 'create_ne_' even if file

already exists (truncate old)

fd = file descriptor for open file

size - size of file (in bytes)

bksz - optimum block size of file

blks = number of blocks in file

meg = error return message (blank if no error)

<stdio.h>

<sys/types.h>

<sys/file.h>

<sys/stat.h>
<errno.h>

<fcntl.h>

the following flags represent file

accessing modes used by open(---)

R_OK 04

W_OK 02

X_OK Ol

F_OK O0

BLKSIZ = 4096;

/* read permission */

/* write permission */

/* execute/search permission */

/* file existence */

/* preset blo,:k/buffer size

in bytes ('- 512 words) ,/

A-7

52 typedef struct { ushort offset: 3;

83 ushort filerl: 3;

54 ushort length: 23;

55 ushort filer2: 3;

56 ushort addres: 32;

57 } chptrf;

58

59

60 typedef struct { ushort offset: 3;

61 ushort filer3: 29;

62 ushort addres: 32;

63 } chptrc;
64

68 ***********************

66 * entry IOXOPE *

67 ***********************

68

69 IOXOPE(path, opt, fd. size, bksz, blks, msg)

70

T1

72 chptrf path. opt. meg ;

73 long int *fd, *size. *bksz, *blks ;

74

75 {

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

IOO

iol

lO2

lO3

lO4

extern int errno;

extern int BLKSIZ;

chptrc

int

char

cpath, copt;

ipath, lopt. lmsg;

oc, *op, *pp. fna_[256];

int i, flags, mode, acc;

struct stat stbuf;

/* create local C-pointers form FORTRAN-pointers */

cpath.offset = path.offset;

cpath.addres = path.addres;

Ipath = path.length;

copt.offset = opt.offset;

copt.addres = opt.addres;

lopt = opt.length;

lmsg = meg.length;

pp = cpath;

op = copt;

/* string offset in bytes *[

/* length 'bits' count */

/* string length in bytes */

/* offset 'bits' count */

/* string address */

/* CHar PoinTeR Fortran */

/* */

/* string offset in bytes */

/* unused space */

/* string address */

/* CHar PoinTeR C-lang. */

/* */

/* transfer FORTRAN character string (path) to local array fnam[] */

i - O;

A-8

I05

106

I07

108

109

II0

III

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140 /*

141

142

143

144

145

14G

147

148

149

ISO

151

152

153

154

155

156

157

while ((*pp !- '\0') k& (*pp I- '

{
fnam[i++] - *(pp++);

}
fnaa[i] - '\0';

') tt (i < Ipath))

/* setup open options by checking

OC m 'C';

acc - access(fnam, F_OK);

file statue */

/* oet open/create flag = 'create' */

/* attempt to access the file */

if (acc -- -1)
{

if (*(op+l)=='o')

IOXERR_(errno, meg, lag s);

return;

}

}
else

{

if (*(op+l)-='n')

OC 1 'C ' ;

else

OC 1 '0';

}

/* tile does not exist */

/, ,/

/* user option says 'old' */

/* extract error number

/* _eturnto user */

,/

/* file exists */

/, ,/

/* user option says 'new' */

/* _Let open/create flag = 'create' */

/* user option says 'old/both' */

/* ,,et open/create flag - 'open' */

mode = 0644; /* ,_et protection = (rw_,r__,r__) */

flags = O; /* ,_et open 'flags' using (opt) */

if (*(op) -- 'r')

_f (* (Op)II 'W')

if (* (Op) II ! .)

flags = flags

flags = flags

flags = flags

I O_RDONLY;

I O_WRONLY;

I O_RDYR;

if (*(op+l) II '0')

if (*(op+l) II 'hi)

if (*(op+l) -- 's')

flags - flags I O_EXCL; */

flags I flags I O_CREAT I O_I_UNC;
flags =flass I o_c_T I O_TRUNC;

*size - O;

*bksz = O;

*blks - O;

*fd - open(fnaa, flags, mode);

/* _,et defaults for file size */

/* ,:)pen/create file 'path' */

if (*fd l= -1)

{
IOXERR_(errno. asS. lmsg);

}
else

(

/* _rror on open/create request */

/* extract error number

/* 'lralid file open, check status */

,/

A-9

158

159

160

161

162

163

164

165 /*

166 *

167 *

168 */

169

170

171

172

173

174

175

176

177

178

179

180

181

if (fstat(*fd, &stbuf) -- -I)

(

lOXERR_(errno, nss, Ins K);
)

else

*size = etbuf.st_size;

/* error in status request 7

/* extract error nunber

/* valid status info

/* set 'size'

,/

*bksz = stbuf.st_blksize;

*bike = stbuf,st_blocks;

IOXERR_(NULL, meg, Imeg);

,/

= file size (char) */

/* clear error number

/* if file has been successfully opened and it is a scratch file,

** then if the file is unlinked at this point (while still open),
** it will be deleted when it is closed.

*/
if ((*(op+l) == 's') && (unlink(fnam) != 0))

IOXERR_(errno, msK, Imsg) ;

)
)

return,
)

,/

,/

A-IO

IOXRDR- Read r_ words from file

1 /,
2 *

3 *

4 *

8 *

6 *

7 *

8 *

9 *

10 *

II *

12 *

13 *

14 *

15 *

16 *

17 *

18 *

19 *

20 */

21

22 #include

23 #include

24 #include

25

IOYJtDR: read 'n' words from file 'fd', starting at block no.

Modified for UNICOS 3.0 cft77 charact_,r arguments

this routine is called in fortran (f7_i) via:

call IOXRDR (fd, bur, nwds, blk meg)

input arguements:

fd = file descriptor for file

bur - pointer to buffer string (char)

nwde - number of words (long int) to read in

blk - starting 'block' number in file

output arguements:

meg - error return message (blan]: if no error)

<stdio.h>

<sys/types.h>

<eye/file.h>

26 typedef struct _ ushort offset:

27

28

29

30

31 /*
32 *

33 *

34 *

z5 */
36 #define

37 #define

38 #define

39

40 lOXaDa(fd,

41

42 chptrf
43

44 char

45 long int

46

47 {
48

49 extern int

50 extern int

51 int

3;

ushort filerl: 3;

uehort length: 23;

ushort filer2: 3;

ushort addres: 32;} chpt:_'f;

the following flags represent file positioning

parameters used by lseek(---)

L_SET 0

L_INCR I

L_XTND 2

/* absolute o_fset (from BOF) */

/* relative to, current offset */

/* relative to end of file */

bur, nwds, blk, meg)

meg;

*buf;

*fd, *nwds, *blk;

errno;

BLKSIZ;

nbuf, poe, ibuf, lmsg;

'blk'

A-II

52

53

54

65

56

57

58

59

60

61

62

63

64

65

66

67

68

69

7O

71

72

73

74

75

76

77

78

79

80

81)

Ion s int offset;

lnsK = mag.lenKth;

nbuf - *nwds * 8;

offset - BLKSIZ * (*blk - 1);

/* no_bytes = 8 * no_words */

/* (byte_wise) offset of 'blk' */

if (offset >= O) /* position file before read request */
{

pos - lseek(*fd, offset. L_SET);

if (pos -- -I)
(

IOXEEE_(errno. nsg. lnsg);

return;

)
)

/* error condition in lseek call

/* extract error number

,/

ibuf = read(*fd, bur, nbuf); /* read in 'nbuf' bytes to 'bur' */

if ((ibuf =- -I) jJ (ibuf I= nbuf))

IOXERR_(errno, risK, lmsg);
)

else

(

IOXEER_(NULL, msK, lms K);
)

return;

/* error condition on read */

/* extract error number */

/* clear error number */

,/

A-12

IOXWTR - Write Ii words to a file

2

3

4

5

6

7

8

9

I0 *

II *

12 *

13 *

14

15

16

17

18

19

20

21

22 #include

23 #1nclude

24 #1nclude

25

1 /* IOXWTR: write 'n' words to file 'fd', starting at block no. 'blk'

* _odified for UNICOS 3.0 cft77 characte:c arguments

* this routine is called in fortran (f77} via:

* call 10XWTR (fd. bur, nwds, blk, msg)

* input arguements:

fd = file descriptor for file

bur - pointer to buffer string (l_mg int)

nwds = number of words (long int) 6o write out

* blk = starting 'block' number in :file

* output arguements:

* meg - error return message (blank if no error)

*/

<stdio.h>

<sys/types.h>

<sys/file.h>

26 typedef struct (ushort offset: 3;
27 ushort filerl: 3;

28 ushort length: 23;

29 ushort filer2: 3;

30 ushort addres: 32;_ chptrf;

31

32 /*
33 *

34 *

35 *

3e */
37 #define L_SET 0

38 #define L_IrJCR 1

39 #define L_XTND 2

40

41 10XWTE(fd, bur, nwds, blk, msg)

42

43 chptrf msg;

44 char *bur;

45 long int *fd, *nwds, *blk;

46

47 (
48

49 extern int errno;

50 extern int BLKSIZ;

51 int nbuf, pos, ibuf, lug;

the following flags represent file p_sitioning

parameters used by lseek(---)

/* absolute offset (from BOF) */

/* relative to current offset */

/* relative to end of file */

A-I:|

52

83

54

55

56

57

58

89

6O

61

62

63

64

65

66

67

68

69

7O

71

72

73

74

75

76

77

78

79

8O

81

82

83)

lon 8 int offset;

lms s = nsg.lensth;

nbuf - *nwds * 8;

offset = BLKSIZ * (*blk - 1);

if (offset >= O)

(

pos = Iseek(*fd, offset, L_SET);

if (pos -- -1)

lOXERE_(errno, meg, Ims 8);

return;

}
)

/* no_bytes = 8 * no_words */

/* (byte_wise) offset of 'blk' */

/* position file before write request */

/* error condition in lseek call ? */

/* extract error number

ibuf = write(*fd, bur, nbuf); /* write in 'nbuf' bytes to 'buf' */

if ((ibuf =- -I) JJ (Ibuf J- nbuf))

IOXERR_(errno, nss, lms s);

/* error condition on write */

/* extract error number */

)
else

(

IOXERR_(NULL, asK, lms g);
)

/* clear error number */

return;

,/

A-14

Appendix B. Testbed Main Program

Testbed Main Program in AMS format

I CSHsader: nicespar.ams,v 1.3.1.1 87/09/21 14:59:54 as Exp $

2 C-DECK TESTBED TESTBED FORTRAN

3 C-BLOCK FORTRAN

4 program testbed

5 c

6 c main program for CSM Testbed macroprocel_sor

7 c

8 C+ .. +

9 C+ C O M M O N & 0 L 0 I!f A L S +

I0 C+ .. +

11 include ' CSM_INC : KORCOMA. INC'

12 common /iando/ iin, ioutx

13 couunon/nsextp/iextp

14 C+ .. +

15 C+ LOCALS +

16 C+ .. +

17 character*50 verld, vertitl

18 character*32 Idproc, commd, cclval

19 character*64 procnam, filnam, cclma¢

20 character*256 imase

21 character*8 cdt (2)

22 logical exis

23 inteser runmod

24

25 C+ .. +

26 C+ Installed Processors +

27 C+ .. +

28 include 'procs. inc'

29 C+ .. +

30 C+ D A T A +

31 C+ .. +

32 data iextp/1/

33 data vertitl/' CSM TESTBED Ver. 1.2 - May 1988'/

34 C+ .. +

35 C+ L 0 G I C +

36 C+ .. +

37 C

38 C

39 C

40

4l C

42 C

43 C

44

45 C

46 C

47 C

48 C

Initialize common variable to the length of the blank common work array

kort - kszzz ! Changed from DATA statement CGL 4/86

Send empty message to CLIP to force it to boot

call clput(' ')

Set unit where printed output will be _ritten

Look for macrosymbol 'ns_prtunt' first, then CLIP PRT if not defined

B-1

49

6O

51

52

53

54

55

56

57

58

59

60 C

61

62

63 c

64

65

66 c

67

68

69

7O

71 c

72 C

73 C

74

75

76

77

call neprtu(ioutx, ierr)

C

C-IF VAX

verid='VAX/VMS'//vertitl

C=ELSEIF UNIX

verld-'UNIX'//vertltl

C-ELSEIF CRAY

verld='CRAY-2'//vertitl

C-ENDIF

C

C Get current date and time

call datimc ('R', o, cdt)

write(ioutx, '(/Ix,a,lOx,a,lx,a/)') verld, cdt(1), cdt(2)

call tlmrb

call saacro(1)

100 continue

tdproc - 'CSM'

call gmeign(idproc)

200 continue

Get next user command

call clnext(' CSM>',' Enter command to execute processor: [XQT

$ //'proc_name', nitems)

comand - cclval(1)

idproc - cclval(2)
78 C-IF UNIX

79 lent = lenetb(coamnd)

80 call cc2uc(comand, coaand, lenc)

81 lenp = lenetb(idproc)

82 call cc2uc(idproc, idproc, lenp)
83 C'ENDIF UNIX

84 c

85 c

86 c

87 c

88

89 c

9O

91

92

93

94

95

96

97

98

99

lO0

101

check macrosymbol to see whether or not to initialize blank

common array to zero

initcom=iclmac('NS_INITCOM')

290

if(nitems.gt.l.and.((cosmmd.eq.'[XQT').or.(commnd.eq.'RUN ')))
Sthen

if(idproc.eq.'EXIT') then

call clput('*stop')
else

if(idproc.ne.' ') then

do 300 i=l,nproc

if(idproc .eq. namep(i)) then

if (initcom .ne. O) then

do 290 J=l,kort

a(j)-o.
endif

B-2

102

103

104

105 300

106 C-IF V_(

I07

108

109

iproc - i

go to 1000

endif

continue

procnam='nsSextp:'//idproc//'.exe'

call stripbl(procnam)

inquire(file-procnam,exist=exis)

110 C-ELSEIF UNIX

III c

112 c

113 c

114

115 c

116 c

I17 c

118

119

120

121 C

122 C=ELSE

123

124

125 C

126 C-ENDIF

127

128 C

129 c

130 C

131

132 C

133 C

134 C

135 C

136

137

138 302

139

140

141

142 310

143

144 C

145

146

147 320

148

149

150 321

151

152

153

154

Close bulk output file

if (ioutx.ne.6) close (unit=ioutx)

Convert filename to lower case

call cc21c(idproc,idproc,lenp)

procnam-idproc

exis-.true.

Let Superclip try to find the file

procnam=idproc

exis=.true.

Let Superclip try to find the file

if(exis) then

run external processor

call clput('*run '//procnam _I

If we get back here, there was an e_'ror;

continue if interactive or terminate, if batch

write(ioutx,*) 'Unable to e:_:ecute ',procnam

call fbi(runaod)

if(runmod.eq.O) call endrun ('CSM', 302)

go to 100

else

write(lOUTX,310) procnam

format(' Unable to run ',a,'; File not found.')

endif

else

write(IOUTX.320)

format(' Error, invalid TESTBED command; image follows:')

call clglim (image)

write(IOUTX,321) image

format(a132)

endif

endif

else

write(lOUTX,320)

B-3

155 call clglim (image)

156 wrlte(IOUTX,321) image

157 endlf

158 gO to 100
159 1000 continue

160 c

161 c execute the appropriate processor
162 c

183 include 'subcalls.inc'

164 1500 continue

165 go to 100
166 end

167 C=END FORTRAN

B-4

Include File Containing Processor Abbreviations - (procs.inc)

parameter (nproc -39)
character*6 naaap(nproc)

data namap/'AUS'.'DCU','DR','E','EIG','EKS','ELD','EQNF'.'GSF',
$ 'INV','K','KG','M','PS','I_LTA'.'PSF','SSOL','TAB',

$ 'TOPO','VPRT','VEC','IRP','PARA','PKRA'.'PRTE','LAU',

$ 'CSMI','RSEq','PFM','MTP','SSTA','TAFP','TCEO','TRTA'.

$ 'TRTB'.'TRTG','TAK','TADS','VIEW'/

B-5

I

2

3

4

5

6

7

8

9

I0

II

12

13

14

15

16

17

18

19

2O

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

Include File for Macroprocessor Subroutine Calls - (subcalls.inc)

go to(1001,1002,1003.1004,1005,1006,1007,1008,1009,1010,1011,1012,

$ 1013,1014,1016.1016,1017,1018.1019,1020.1021,1022,1023,1024,

$ 1025,1026,1027,1028.1029,1030,1031.1032,1033.1034,1035,1036.

$ 1037,1038,1039)

$.Iproc

call AUS

So to 200

call DCU

So to 200

call DR

go to 200
call E

go to 200
call RIG

So to 200
call EKS

So to 200
call ELD

go to 200

call EQNF

go to 200

call CSF

8o to 200

call INV

8o to 200

call K

go to 200
call KG

go to 200

call M

go to 200

call PS

6o to 200

call PLTA

go to 200

call PSF

go to 200

call SSOL

go to 200
call TAB

go to 200

call TOPO

go to 200
call VPRT

go to 200
call VEC

go to 200
call IMP

8o to 200
call PAMA

go to 200

B-6

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

8O

81

82

83

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

call PKMA

go to 200

call PRTE

go to 200
call LAU

go to 200

call CS_I

go to 200

call RSEq

go to 200

call PFH

Eo to 200
call HPH'rP

go to 200
call gPSSTA

So to 200

call MPTAFP

go to 200
call MPTGEO

So to 200
call MPTRTA

&o to 200
call HPTRTB

go to 200

call MPTRTG

So to 200

call)4PTAK

go to 200
call gPTADS

go to 200
call NPVIE¥

So to 200

B_'; _

n .qA

1. Report No.

NASA TM-100642

4, Title and Subtitle

The CSM Testbed Software System: A Development Environment

Report Documentation Page

2. Government Accession No. 3. Recipient's Catalog No.

5. Report Date

September 1988
for Structural Analysis Methods on the NAS CRAY-2

7. Author(s)

Ronnie E. Gillian and Christine G. Lotts

9. Performing Organisation Name and Address

NASA Langley Research Center

Hampton, VA 23665-5225

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration

Washington, DC 20546-0001

6. Performing Organisation Code

8. Performing Organisation Report No.

10. Work Unit No.

505-63-01-10

11. Contract or Grant No.

13. Type of Report and Period Covered

Technical Memorandum

14. Sponsoring Agency Code

15. Supplementary Notes

Ronnie E. Gillian, Langley Research Center, and Christine G.Lotts, Planning Research Corporation
16. Abstract

The Computational Structural Mechanics(CSM) Activity at Langley Research Center is developing I

methods for structural analysis on modern computers. To facilitate that research effort, an applications I

development environment has been constructed to insulate the researcher from the many computer i
operating systems of a widely distributed computer network. The CSM Testbed development system'

was ported to the Numerical Aerodynamic Simulator(NAS) Cray-2, at the Ames Research Center, to

provide a high end computational capability. This paper describes the implementation experiences, the

resulting capability, and the future directions for the Testbed on supercomputers.

17.Key Words (Suggested by Authors(s))
Structural analysis software

Finite element analysis

Finite element software

19. Security Classif.(of this report)
Unclassified

18. Distribution Statement

Unclassified--Unlimited

20. Security Ciassif (of this page)Unclassified

NASA FORM 1626 OCT ss

For sale by the National Technical Information Service, Springfield, Virginia 22161-2171

Subject Category 39

21. No. of Pages 122. Price45 A0 3

